CURRICULUM
BIOLOGICAL DATA ANALYTICS

Master of Science in Data Science
Damiano Piovesan
Introduction

- Advances in “omics” technologies opened new frontiers in biomedicine and biotechnology
- Modern life science is based on high-throughput experiments
- Data interpretation requires computational technology, advanced statistical analysis and mathematical tools
- Great need for specialists and analysts in research institutions, hospitals, pharma and diagnostic companies
What about BDA?

An example, the protein folding problem:

- **Molecular Dynamics** simulations take **years** of calculation
- **Deep learning** algorithms take **hours**

AlphaFold
Google DeepMind lab
What about BDA?

An example, precision medicine:

- Understanding diseases at the molecular level
- Target precision medicines against the causes of disease and not simply treat the symptoms
What about BDA?

With USD$99 you can (23andMe®):

• Ancestry Composition
• Traits
• Neanderthal Ancestry

With full genome:

• Genetic disease
• Dietary profile
• ...
What about BDA courses?

• Math
 • Statistics and applied mathematics
 • Machine Learning algorithms and tools

• Bio
 • Molecular and Cell Biology
 • Computational Biology and Bioinformatics
Prospective student’s background

We welcome students with a **good background** in:

- Computer science, Computer Engineering, ICT
- Mathematics, Statistics, Physics
- **Biology, Medicine** and related (with math/statistics fundamentals)

Prospective students should:

- Have an attitude on both basic science (biology, biochemistry, physics) and computer science
What we expect from students

• Tackle computational biology problems in a scientific, evidence-based manner
• Gain experience working in a true multidisciplinary mindset
• Effective management and exploitation of high-throughput experimental data

Students will have the opportunity to perform real lab experiments and understand how molecular data are generated
What to expect...

- Mathematical and computational methods in computational biology and bioinformatics
- Advanced **machine learning**, optimization and algorithms to model biological phenomena
- Analysis and interpretation of large datasets coming from high-throughput technologies ("omics" data)
- Fundamental aspects of **cell biology**
Our graduates

- Basic knowledge of life sciences
- Ability to deal with “omics” data and ability to model molecular systems
- Effective and attractive professional profile
- Excellent placement in the job market
Companies/Research Institutions dealing with big data in

- Biology and healthcare
- Drug design
- Precision medicine
- Diagnosis
- ...
Curriculum structure

- Two optional courses, two electives

- **COMPUTER SCIENCE**
 - MATHEMATICAL CELL BIOLOGY
 - HUMAN DATA ANALYTICS
 - GAME THEORY
 - NETWORK SCIENCE

- **BIOLOGY, ECONOMICS, HUMAN & SOCIAL SCIENCE**
 - BIOINFORMATICS
 - OMICS IN HUMAN DISEASE
 - LAW AND DATA

- **ELECTIVE**
 - 12 CFU
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>STATISTICAL LEARNING 1A</td>
<td>6CFU</td>
</tr>
<tr>
<td>2</td>
<td>FUND. OF INF. SYSTEMS</td>
<td>12CFU</td>
</tr>
<tr>
<td>3</td>
<td>STOC. METHODS</td>
<td>6CFU</td>
</tr>
<tr>
<td>4</td>
<td>MACHINE LEARNING 4</td>
<td>6CFU</td>
</tr>
<tr>
<td>SECOND SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>STATISTICAL LEARNING 1B</td>
<td>6CFU</td>
</tr>
<tr>
<td>5</td>
<td>STRUCTURAL BIOINFORMATICS</td>
<td>6CFU</td>
</tr>
<tr>
<td>6</td>
<td>OPTIMIZATION FOR DATA SCIENCE</td>
<td>6CFU</td>
</tr>
<tr>
<td>7</td>
<td>INTRODUCTION DI MOLECULAR BIOLOGY</td>
<td>6CFU</td>
</tr>
<tr>
<td>8</td>
<td>ELECTIVE COURSE</td>
<td>6CFU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BIOLOGICAL DATA</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>COGN. BEHAV. & SOCIAL DATA</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1 COURSE BETWEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BIOINFORMATICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LAW AND DATA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MATHEMATICAL CELL BIOLOGY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OMICS IN HUMAN DISEASE</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>INTERNSHIP</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>ELECTIVE COURSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECOND SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTERNSHIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THESIS</td>
</tr>
</tbody>
</table>
CURRICULUM BIOLOGICAL DATA ANALYTICS

Master of Science in Data Science
Damiano Piovesan