CURRICULUM
MATHEMATICS OF DATA SCIENCE

Master of Science in Data Science
Francesco Rinaldi
Introduction

- Mathematics is ubiquitous in Data Science
- Plenty of mathematical tools behind Data Science models & methods
- Mathematical tools make things work!
- Data Scientists need to understand/develop **models** and **methods** for dealing with data
What about MODS?

It qualifies students to

• build/analyze structured models for representation of concrete applications

• properly choose and/or develop methods for the handling of those models

• get a deep understanding of tailored techniques and math theory for data analysis

• combine and redevelop all those tools in order to solve complex problems
What about MODS courses?

Courses put an emphasis on notions coming from

- Statistics
- Optimization
- Machine Learning
- Theory of Big Data Representation
Prospective student's background

We welcome students with a good background in

- Mathematics
- Statistics
- Computer Science

Prospective students should

- Have the willingness to study mathematical theory
- Apply their knowledge in the practical management of big data
What we expect from students

Students in the curriculum should have an interest in using

• Mathematical tools

• Tailored algorithms for the analysis of data
What to expect...

Curriculum conceived as a **multi-disciplinary platform** that enables students to
- handle models/methods coming from statistics, machine learning, optimization
- properly understand the way all those tools are intertwined in big data applications

Projects and **homeworks** allow to develop project management and analytical skills

Partnerships with industries/research institutions enable to implement mathematical techniques in the solution of exciting data science applications
Who you will become

After this two-year programme student will be able to

• Represent, compress and store huge datasets
• Develop suitable models to recognize and analyze data
• Understand methods/algorithms for the handling of big data models
• Tackle advanced problems and applications based on current research
Employment Prospects

Companies/Research Institutions dealing with big data in

• Finance
• Transportation
• Communications
• Biology
Employee's required skills

- strong mathematical background
- approach real-world problems using computational analysis
- understand the mathematics underpinning big data
Our graduates

- deep knowledge of mathematical theory
- ability to deal with the computational challenges behind data-driven systems
- effective and attractive professional profile
- excellent placement in the job market
Foundations

MATHMATICS
- STOC. METHODS
- OPTIMIZATION FOR DS
- MATHEMATICAL MODELS AND NUM. METHODS 4 BIG DATA

STATISTICS
- STATISTICAL LEARNING
- STATISTICAL METHODS FOR HD DATA

COMPUTER SCIENCE
- FUND. OF INF. SYSTEMS
- MACHINE AND DEEP LEARNING

BIOLOGY, ECONOMICS, HUMAN & SOCIAL SCIENCE
- COGN. BEHAV. & SOCIAL DATA
2 recommended courses + 2 elective courses to complete the study plan

- Mathematics:
 - HD Probability for DS
 - Mathematical Cell Bio

- Computer Science:
 - Human Data Analytics
 - Game Theory
 - Network Science

- Biology, Economics, Human & Social Science:
 - Biological Data
 - Law and Data
 - Business Eco. & Fin. Data
 - Human Computer Interaction

- Elective:
 - 2 courses
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>STATISTICAL LEARNING 1A</td>
<td>6CFU</td>
</tr>
<tr>
<td>2</td>
<td>FUND. OF INF. SYSTEMS</td>
<td>12CFU</td>
</tr>
<tr>
<td>3</td>
<td>STOC. METHODS OR HD PROBABILITY FOR DS</td>
<td>6CFU</td>
</tr>
<tr>
<td>4A</td>
<td>MACHINE AND DEEP LEARNING 4A</td>
<td>6CFU</td>
</tr>
<tr>
<td>SECOND SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>STATISTICAL LEARNING 1B</td>
<td>6CFU</td>
</tr>
<tr>
<td>4B</td>
<td>MACHINE AND DEEP LEARNING 4B</td>
<td>6CFU</td>
</tr>
<tr>
<td>5</td>
<td>OPTIMIZATION FOR DS</td>
<td>6CFU</td>
</tr>
<tr>
<td>6</td>
<td>MATHEMATICAL MODELS AND NUM. METHODS 4 BIG DATA</td>
<td>6CFU</td>
</tr>
<tr>
<td>7</td>
<td>ELECTIVE COURSE</td>
<td>6CFU</td>
</tr>
</tbody>
</table>
FIRST SEMESTER

<table>
<thead>
<tr>
<th></th>
<th>Course Description</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>STATISTICAL METHODS FOR HD DATA</td>
<td>6CFU</td>
</tr>
<tr>
<td>9</td>
<td>COGN. BEHAV. & SOCIAL DATA</td>
<td>6CFU</td>
</tr>
<tr>
<td>10</td>
<td>1 COURSE BETWEEN</td>
<td>6CFU</td>
</tr>
<tr>
<td></td>
<td>• HD PROBABILITY FOR DS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MATHEMATICAL CELL BIO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BIOLOGICAL DATA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LAW AND DATA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BUSINESS ECO. & FIN. DATA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 COURSE BETWEEN</td>
<td>6CFU</td>
</tr>
<tr>
<td></td>
<td>• HUMAN DATA ANALYTICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GAME THEORY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NETWORK SCIENCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HUMAN COMPUTER INTERACTION</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ELECTIVE COURSE</td>
<td>6CFU</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th></th>
<th>Course Description</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTERNSHIP</td>
<td>15CFU</td>
</tr>
<tr>
<td></td>
<td>THESIS</td>
<td>15CFU</td>
</tr>
</tbody>
</table>